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Abstract.

The Atlantic Meridional Overturning Circulation (AMOC) is a major climate element subject to possible ongoing loss of

stability. Recent studies have found evidence of a gradual weakening in circulation, including early warning signals (EWS),

such as increased fluctuations and correlation time of the system, which are both known to be indicators of a possible forth-

coming tipping point. To assess these changes in statistical behavior we propose a robust and general statistical model based5

on a second-order autoregressive process with time-dependent parameters that allow for the statistical changes from increased

external variability and destabilization to be accounted for separately. We estimate the time evolution of the correlation pa-

rameters using a hierarchical Bayesian modeling framework which also yields uncertainty quantification through the posterior

distribution. To assess possible changes in AMOC stability we apply the model to an AMOC fingerprint proxy based on the

Sub-Polar Gyre and the global mean temperature anomaly. We find statistically significant EWS which suggests that AMOC is10

indeed undergoing a loss of stability and is getting closer to a tipping point. The methodology developed in this study is made

publicly available as an extension of the R-package INLA.ews.

1 Introduction

The Atlantic Meridional Overturning Circulation (AMOC) is a key driver of Earth’s climate, responsible for the large-scale

transport of heat and water masses across the Atlantic Ocean (Rahmstorf, 1995; Boettner and Boers, 2022). This circulation15

system is widely believed to have multi-stable states (Stommel, 1961; Lenton et al., 2008), including a strong mode, which is

currently dominant, and a weak mode, which has been associated with past climate disruptions. Paleoclimate records suggest

that AMOC’s abrupt shifts may have played a major role in past climate variability, especially for the Dansgaard-Oeschger

events’ temperature fluctuations that occurred during glacial periods (Henry et al., 2016; Boers et al., 2018). Some climate

models indicate that the AMOC could undergo a critical transition if freshwater input into the North Atlantic reaches a certain20

threshold (Wood et al., 2019; Hawkins et al., 2011; Weijer et al., 2019). This behavior, known as hysteresis, implies that once

the AMOC weakens beyond a tipping point, it may not recover even if initial conditions are restored. However, the exact

conditions required for such a transition remain uncertain. While earlier climate models suggested that an AMOC collapse this

century is very unlikely, more recent models show a wider range of possible responses to global warming projections, raising
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concerns about underestimated risks due to model biases like underestimated freshwater input (Masson-Delmotte et al., 2021;25

Gong et al., 2022; Liu et al., 2017). A weakening or collapse of the AMOC would have far-reaching consequences, including

disrupting weather patterns, altering precipitation systems, and potentially triggering cascading effects on other climate compo-

nents (Jackson et al., 2016; Lenton et al., 2008; Stouffer et al., 2006). To anticipate such changes studies have focused on using

critical slowing down theory, stating that when the system is appoaching a tipping point its recovery from small perturbations

becomes progressively weaker. This phenomenon, called early-warning signal (EWSs), can be characterized by an increased30

variance and autocorrelation which can be used as statistical indicators of approaching critical transitions.

To detect these statistical changes, a common approach is to start from the linear approximation of a dynamical system with

white noise around some stable fixed point xs, giving

dx(t) =−λ(x(t)−xs)dt + σdB(t), (1)

where λ =−F ′(xs) and dB(t) is a white noise process. This Linearization is recognized as the Langevin stochastic differential35

equation, which has the following solution

x(t) = x0 +

t∫

−∞

g(t− s)dB(s), (2)

where g(t− s) is a Green’s function defined by

g(t) =





exp(−λt), x≥ 0

0, x < 0
. (3)

This form of x(t) is also referred to as an Ornstein-Uhlenbeck (OU) process. When discretized, this process yields a first-order40

autoregressive (AR) process.

xt = ϕxt−1 + εt, εt ∼N
(

0,
1−ϕ2

2λ
σ2

)
(4)

with variance Var(xt) = σ2/(2λ) and lag-one autocorrelation parameter ϕ = exp(−λ∆t).

With this model, EWS are detected through an increase of the autocorrelation or variance. However, (Boers, 2021) showed

that these indicators can be biased if the system is driven by external noise that itself has increasing autocorrelation or variance45

leading to false positive alarms. To account for such bias, Boettner and Boers (2022) and Morr and Boers (2024) suggests

that the OU process of Eq. (2) should be driven by correlated noise rather than white noise. After discretization the resulting

process yields an AR(1) process that is driven by another AR(1) process. Hence the discretization is similar to Eq. (4), except

that the white noise process ϵt is replaced by an AR(1) process

vt+1 = ρvt + σvξt (5)50

with ρ representing the correlation parameter of the noise, σv is a scaling parameter and

ξt ∼N
(

0,
1−ϕ2

2λ

)
(6)
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is a white noise process. It can be shown that this model actually yields a second-order autoregressive (AR) process (Morr

and Boers, 2024). This model encompasses the original AR(1) model in (4) when ρ = 0 and as showcased in (Boers, 2021) it

comprehends cases in which external noise is also correlated ρ ̸= 0 allowing the parameter ϕ not to be biased in this regard.55

Consequently, an increasing ϕ will act as a more reliable indicator for detecting EWS.

Climate systems that are prone to tipping, such as the AMOC, are often driven by some external forcing. For the AMOC, the

freshwater forcing from Greenland melts acts like a bifurcation parameter as freshwater inputs can disturb the salinity and the

temperature of the AMOC, potentially pushing the system closer to its tipping (Wood et al., 2019). To incorporate forcing into

our model, we use a similar approach as in (Myrvoll-Nilsen et al., 2020, 2024), where the dynamical system is represented by60

dx(t) =−λx(t) +F (t)dt + U(t)dt, (7)

where F (t) represent the forcing and U(t), as before, represents an OU process. The solution of this equation can be expressed

as the sum of one forced component and one noise component

x(t) = ν(t) + ξ(t). (8)

Here, the noise component, ξ(t), is represented by an AR(2) process described previously and the forced component, v(t), is65

expressed by

ν(t) =
1√

2λ(t)κf

t∫

0

F (s)e−λ(t)(t−s)ds. (9)

This model allows EWS to be detected while accounting for the influence of external forcing on the system’s dynamics.

Most studies detect EWS using sliding windows to obtain estimates of the variance and correlation for each window. This

approach requires selecting an appropriate window length, which introduces a fundamental compromise. A shorter window70

provides a more accurate representation of the system’s momentary state, but the limited number of data points can reduce the

reliability of the statistical estimates. In contrast, a longer window improves the robustness of these estimates by incorporating

more data, but it does so at the cost of responsiveness, as it averages information over a broader time scale and may fail to

capture short-term fluctuations effectively. Determining the optimal window length is thus a critical but challenging task, as it

should ideally balance estimation accuracy with the ability to reflect rapid changes in the system’s evolution. Myrvoll-Nilsen75

et al. (2024) propose an alternative model-based approach that eliminates the need for this choice. Instead of relying on a

fixed window length, the correlation parameter is assumed to evolve over time according to a predefined linear structure. This

assumption enables a hierarchical Bayesian model formulation, enabling the use of well-established computational techniques

to infer the parameters of the linear structure. Furthermore, Myrvoll-Nilsen et al. (2024) adopts a Bayesian framework which

offers the additional advantage of providing uncertainty quantification in the form of posterior distributions, making the analysis80

more robust and interpretable.

In this paper we build upon the hierarchical Bayesian framework developed by Myrvoll-Nilsen et al. (2024) to integrate

the AR(2) model proposed by Morr and Boers (2024) and Boettner and Boers (2022). This extension helps mitigate false-

alarms caused by correlated noise and eliminates the need for sliding time windows, while benefiting from the advantages of a
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Bayesian modeling framework. This approach is then applied on an AMOC fingerprint in order to assess its potential loss of85

stability.

The paper is organized as follows. Section 2 outlines our methodology for Bayesian modeling framework, including details

on how inference can be obtained efficiently. In Section 3 we first demonstrate the approach on simulated data and evaluate the

accuracy and robustness. Then we apply the methodology to an AMOC fingerprint dataset. Further discussion and conclusions

are provided in Section 4.90

2 Bayesian modeling

We assume that the observed AMOC fingerprint, y = (y1, ..,yn)⊤ is expressed by

y = µ + x (10)

where the forcing response µ = (µ1, ...,µn)⊤ is given by

µt = σf (t)
t∑

s=0

F (s)e−λ(t)(t−s+0.5)ds (11)95

and the correlated time-dependent noise, x = (x1, ...,xn)⊤, is given by

xt+1 = ϕxt + vt+1

vt+1 = ρvt + σvξt,
(12)

which is an AR(2) process (Boers, 2021; Morr and Boers, 2024). To model the evolution of the autocorrelation parameters we

assume that they change linearly in time, i.e.

ϕ(t) = aϕ + bϕt, 0≤ t≤ 1,

ρ(t) = aρ + bρt, 0≤ t≤ 1,
(13)100

expressed by unknown parameters aϕ, bϕ,aρ and bρ which are estimated by fitting the model to the observed AMOC fingerprint.

Early warning signals due to critical slowing down is characterized through the evolution of ϕ(t), while potential changes in

external variability is captured by v = (v1, ...,vn)⊤. Separating these signals prevents false alarms as discussed by Boers

(2021).

To obtain robust uncertainty estimates we adopt a Bayesian framework for parameter estimation, similar to Myrvoll-Nilsen105

et al. (2024). Given the hierarchical nature of the model, where y is modeled in terms of µ and x, which are themselves

governed by hyperparameters θ = (aϕ, bϕ,aρ, bρ,σv,σf ), a latent Gaussian model formulation provides a natural and efficient

framework for Bayesian inference. Both components of the model, µ and x, depend on the parameters aϕ and bϕ through

λ(t) =− logϕ(t). This dependency introduces a challenge for obtaining reliable inference, as the parameters may be difficult

to estimate independently. We therefore choose to model the sum η = µ+x as a single component. The latent Gaussian model110

formulation is defined in three stages as follows.
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1. The first stage defines the likelihood of the model, which is assumed to be conditionally independent given the latent

components µ and x. Since all variation of the AMOC fingerprint observations y is captured by the latent component

η = (η1, ...,ηn)⊤, we model y as Gaussian with mean η and negligible observation noise, σy ≈ 0, effectively setting

y ≈ η, i.e.115

π(y | η,θ) =
n∏

k=1

π(yk | ηk,θ) =
n∏

k=1

1√
2π

exp
(
− (yk − ηk)2

2σ2
y

)
. (14)

2. The second stage defines the prior distribution for the latent field η, given parameters θ. This component is assigned a

multivariate Gaussian prior distribution with mean vector µ and covariance matrix corresponding to the AR(2) process

above with time-dependent ϕ(t) and ρ(t),

π(η | θ) =Nn (µ,Σ) . (15)120

Since η follows an AR(2) process, its precision matrix, Q = Σ−1, is a sparse matrix of bandwidth 2. This property

enables the use of computationally efficient algorithms that substantially reduce the overall computational cost.

3. The final stage defines the prior distributions for the model parameters

π(θ) = π(bϕ)π(aϕ | bϕ)π(bρ)π(aρ | bρ)π(σv)π(σf ). (16)

We assign uniform prior distributions bϕ,(aϕ | bϕ), bρ and (aρ | bρ), and gamma distributions on κv = 1/σ2
v and κf =125

1/σ2
f . Note that since we assume that both 0 < ϕ(t) < 1 and 0 < ρ(t) < 1 then the parameter space of aϕ and aρ depend

on the current state of bϕ and bρ, respectively.

The joint posterior distribution for the parameters is given by

π(v,θ | y) =
π(y | v,θ)π(v | θ)π(θ)

π(y)
, (17)

where π(v) is the marginal likelihood, or evidence, of y. In particular, we are interested in the marginal posterior distribution130

of bϕ, which can be obtained by integrating out the other parameters, θ−bϕ
, and latent variables

π(bϕ | y) =
∫

π(θ,v | y)dθ−bϕ
dv. (18)

Since solving this integral analytically is often not possible in practice, the common approach is to instead approximate it

using sampling based approaches like Markov chain Monte Carlo (MCMC) methods (Robert et al., 1999). However, since

the precision matrix of the latent Gaussian field is sparse, we can employ a number of computationally efficient algorithms135

for fast Bayesian inference. Specifically, we evaluate all marginal posterior distributions using the framework of integrated

nested Laplace approximations (INLA) (Rue et al., 2009, 2017), which is particularly suited for these types of models. INLA

is available as an R package at www.r-inla.org and presents a computationally superior alternative to MCMC. Since

our model requires specific implementation using the custom modeling framework of R-INLA we have decided to make the

code available as a new feature in the user friendly R-package INLA.ews originally developed for the model described in140

Myrvoll-Nilsen et al. (2024). The AR(2) model can be fitted by prompting:
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results <- inla.ews(data=y, forcing=z, model = "ar2")

A more extensive demonstration of the package can be found in Myrvoll-Nilsen et al. (2024).

3 Results

3.1 Accuracy and robustness tests145

To evaluate the accuracy and robustness of the proposed time-dependent nested AR(1) model, we perform two simulation-

based tests. All estimations are made using R-INLA with the prior distributions described in the previous section. Each test is

based on 500 independent simulated time series.

For the first test, we assess whether the model can recover known parameter values when fitted to simulated data generated

from the same process (i.e time-dependent nested AR(1)). We use this process to generate 500 time series of length 150,150

matching the length of the AMOC fingerprint time series used in this paper. For each simulation, the slope parameters bϕ and

bρ are independently drawn from a uniform distribution U(−0.9,0.9). Thereafter, the intercepts aϕ and aρ are drawn from

uniform distributions with boundaries that depend on the simulated slope parameters, ensuring that the resulting ϕ(t) and ρ(t)

remain within the interval (0,1) for all time steps.

We evaluate the estimation accuracy in two ways. First, we computed the root mean square error (RMSE) between the true155

slope values and their marginal posterior means b̂ϕ and b̂ρ. The RMSE is 0.145 for bϕ and 0.278 for bρ. Second, we assess

whether the model reliably infers the sign of the slopes by comparing the marginal posterior probabilities P (bϕ > 0 | y) and

P (bρ > 0 | y) to the true value of the slopes. We consider the slope for ϕ(t) and ρ(t) to be significantly positive if the posterior

probabilities exceed 0.95, i.e. P (bϕ > 0 | y) > 0.95 and P (bρ > 0 | y) > 0.95, respectively. If an estimated b̂ϕ is classified as

positive, given the P (bϕ > 0 | y) > 0.95 threshold, we count it as a true positive if the true slope is positive, i.e. b > 0. If,160

however, b≤ 0 we count the estimate as a false positive. Conversely, if P (bϕ > 0 | y)≤ 0.95 we count it as a true negative if

b≤ 0 and as a false negative if b > 0. We also count the classifications for the estimated b̂ρ. The sensitivity and specificity is

computed as follows,

Sensitivity =
#True Positives

#True Positives + #False Negatives
, Specificity =

#True Negatives
#True Negatives + #False Positives

. (19)

For bϕ, the model achieves a sensitivity of 87.7% and a specificity of 99.8%. For bρ, the sensitivity is 72.2% and the specificity165

99.4%. The results from this test are summarized in Table 1 and illustrated in Fig. 1. Repeating the test with different prior

distributions similar to Myrvoll-Nilsen et al. (2024) did not show significant changes, suggesting that the model is robust to the

choice of prior distributions.
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Figure 1. Results of the accuracy test for nr = 500 simulated time series of length n = 150. Panels (a) and (b) show posterior marginal mean

estimated by INLA for ϕ and ρ, respectively. The blue line shows the true b used in the simulation. Panels (c) and (d) show the estimated

posterior probability of the slope being positive against true values of ϕ and ρ respectively. The horizontal red lines separates the true positive

and negative values while the horizontal one indicates the probability threshold 0.95 used here to determine statistical significance

In the second test, we evaluate the ability of the model to reliably distinguish genuine early warning signals from changes

driven solely by correlated external variability. To do so, we simulate data from two stochastic differential equations. The first170

one represents a system approaching a tipping point, and the second one remains stable but is influenced by a time-dependent

autocorrelated noise. This setup follows the example in Boers (2021). The tipping process is expressed by

ẋ(t) =−x3 + x−T + v(t), (20)

where T increases linearly from −1 to 1, and v(t) is a time-dependent AR(1) process with parameters drawn in the same way

as in the first test. The non-tipping process is generated by175

ẋ(t) =−5x + v(t), (21)
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with the same structure for v(t) as in Eq. (20). Each simulation is run until the tipping point is reached (for the tipping

system) or for 150 time units (for the non-tipping system), resulting in time series of approximately 150 points. The same

inference methodology and classification thresholds are used here, with the distinction that an early warning signal is said

to be detected when P (bϕ > 0 | y) > 0.95. For the tipping processes the model correctly detected an EWS signal in 471 out180

of 500 simulations, corresponding to a sensitivity of 94.2%. For the non-tipping processes, 23 out of 500 simulations were

incorrectly classified as EWS, resulting in a specificity of 95.4%. These results, presented in Table 1 and Fig. 2, indicate that

the model effectively identifies true loss of stability while maintaining a low false positive ratio, even in the presence of strongly

autocorrelated noise.
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Figure 2. Results of the robustness test for nr = 500 simulated time series of length n≈ 150. Panels (a) and (b) show posterior marginal

mean estimated by INLA from the non-tipping simulations for bϕ and bρ respectively plotted against the true value of bρ from the correlated

noise. The black line in panel (a) and blue line in (b) are showing the true bρ used in the simulation. Panel (c) and (d) are similar plots for

the tipping simulations. In panels (a) and (c) blue dots are associated with a statistical significance for the EWS indicator bϕ to be positive

P (bϕ > 0 | y) > 0.95 while red dots means no statistical significance P (bϕ > 0 | y) < 0.95

Overall, these two tests demonstrate that the proposed methodology reliably recovers the evolution of autocorrelation pa-185

rameters, performs well in detecting EWS and is robust to prior assumptions and to structured stochastic external variability

not linked to a loss of stability.
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Accuracy test

Estimates RMSE Sensitivity(%) Specificity(%)

b̂ϕ 0.145 87.8 99.8

b̂ρ 0.278 72.2 99.4

Robustness test

Process b̂ρ RMSE Sensitivity(%) Specificity(%) ⟨b̂ϕ⟩
Tipping 0.34 94.2 - 0.47

Non-tipping 0.26 - 95.4 0
Table 1. Summary statistics from Fig. 1 (top) and Fig. 2 (bottom). Results from Accuracy tests on simulated time-dependent AR(2) processes

showing Root Mean Square Error (RMSE) of the estimates of bϕ and bρ given true values of simulations (blue lines in panels (a)-(b) of

Fig. 1). We also show the sensitivity and specificity expressed in percentages for both parameters. (bottom) Results from Robustness tests on

simulated tipping and non-tipping processes. We show here the RMSE of the estimates of bρ given true simulated values (blue lines in panels

(b) and (d)). Sensitivity and specificity are presented in percentages for each process.

Finally, we evaluate the performance of our model by applying it to known real-world critical transitions such as Dansgaard-

Oeschger (DO) events. These events are known to be abrupt warmings of the North Atlantic region that occurred during the

last glacial period. The presence of EWS before the onset of these events is currently debated; however, several studies report a190

detection of EWS before some of the first 17 DO events (Myrvoll-Nilsen et al., 2024) (Rypdal, 2016) (Boers, 2018) (Hummel

et al., 2024). Therefore, we compare the results of our model with these studies using a setup similar to Myrvoll-Nilsen et al.

(2024) by using a second-order polynomial detrending of the data and considering P (bϕ > 0 | y) > 0.95 as a detection of

EWS. This comparison is illustrated in Table 2 and shows that our model suggests, similarly to Myrvoll-Nilsen et al. (2024),

that some specific event shows signs of critical slowing down in line with the results of Boers (2018) and Rypdal (2016).195

Specifically, 2 shows that our results corroborate the 5 EWS found by Myrvoll-Nilsen et al. (2024) while identifying one more

EWS for the event 13. Moreover, these results corroborate the EWS found for the event 11 by Boers (2018) and the events 5,

9 by Rypdal (2016), our results also show EWS for the events 2 and 13 similarly to these two studies.
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Event Nested AR(1) Myrvoll-Nilsen Rypdal Boers

1 0.893 0.9146 p = 0.02 −
2 0.992 0.9728 p = 0.008 p < 0.05

3 0.29 0.4893 − −
4 0.053 0.084 − p < 0.05

5 0.99 0.9959 p = 0.13 −
6 0.163 0.2123 − p < 0.05

7 0.444 0.7132 − −
8 0.817 0.8878 − −
9 0.994 0.953 p = 0.16 −
10 0.115 0.0732 − −
11 0.977 0.9643 − p < 0.05

12 0.056 0.1662 − −
13 0.978 0.8912 p = 0.39 p < 0.05

14 0.722 0.6629 − p < 0.05

15 0.061 0.0637 − p < 0.05

16 0.99 0.9935 − −
17 0.609 0.6043 − −

Table 2. Table comparing the posterior probability of positive slope P (bϕ > 0 | y) from fitting the nested AR(1) model to the different

Dansgaard–Oeschger events using a second-order polynomial detrending approach. These results are compared with the probability of

positive slope P (b > 0 | y) found by Myrvoll-Nilsen et al. (2024) and p-values obtained from Boers (2018) and Rypdal (2016).
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3.2 Detecting early warning signals in AMOC fingerprint
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Figure 3. AMOC fingerprint proxy from 1870 to 2020, similar as (Ditlevsen and Ditlevsen, 2023) using yearly averaged subpolar gyre sea-

surface temperature anomaly minus twice the global mean anomaly obtained from the Hadley Centre Sea Ice and Sea Surface Temperature

data set (HadISST) (Rayner et al., 2003)

We now apply the time-dependent nested AR(1) model to an AMOC fingerprint similar to the one used by Ditlevsen and200

Ditlevsen (2023) shown in Fig. 3. This fingerprint is constructed as the sea-surface temperature (SST) anomaly in the subpolar

gyre region, averaged annually, minus twice the global mean SST anomaly to compensate for the polar amplification efects

under global warming. Several studies have suggested that this proxy is a suitable indicator of AMOC strength (Caesar et al.,

2018; Jackson and Wood, 2020; Latif et al., 2019), especially since direct observation of the AMOC is only available from

2004 onward. The use of such a proxy is therefore necessary to examine longer-term trends and detect potential early warning205

signals.

As the fingerprint exhibits significant drift, it must first be detrended to satisfy the zero-mean assumption of the model. In

principle, this trend could be extracted using knowledge of the system’s underlying physical processes, but such information

may be unavailable, incomplete or inaccurate. To address this, we consider two different detrending strategies. In the first, we

rely solely on statistical assumptions and remove the trend using either a linear or second-order polynomial fit. In the second210

approach, we incorporate physical information by including an explanatory variable in the model, following the structure

described in (9). Specifically, we use integrated Central-West Greenland (iCWG) surface melt shown in Fig. 4 as a covariate.

The iCWG represents the cumulative surface melt across years, based on the CWG melt stack from Trusel et al. (2018), and is

used to capture the influence of freshwater forcing on AMOC stability.
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Figure 4. Cumulative Central West Greenland runoff from 1971 to 2013

For each model, we compare the posterior marginal mean estimate of the slope parameter bϕ along with the posterior215

probability that the slope is positive. Model fit is assessed using marginal log-likelihood. The full set of results is presented in

Table 3. The fitted trends and time evolutions of ϕ(t) for the linear and polynomial detrending approaches are shown in Fig. 5,

while the estimated response function to the iCWG forcing and associated ϕ(t) evolution are shown in Fig. 6. Among the

different model configurations, the version incorporating iCWG forcing provides the best fit to the data as measured by model

likelihood. In all three detrending strategies, the model identifies statistically significant EWS. These results provide further220

evidence for the presence of EWS for the AMOC, consistent with the findings of Boers (2021) and Ditlevsen and Ditlevsen

(2023), who reported similar signals using different methods and data configurations.
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Figure 5. Panel (a) and (b) show AMOC fingerprint (black) with posterior marginal mean (blue) and 95% credible intervals (red) of the fitted

trends. Panel (c) and (d) show the evolution in time of the correlation parameter ϕ(t) (blue) used as indicator of EWS and 95% credible

intervals (red) with an estimated probability of positive slope P (bϕ > 0 | y)
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Figure 6. Panel (a) shows AMOC fingerprint (black) from 1870 to 2013 to match the time-span of the forcing data with posterior marginal

mean (blue) and 95% credible intervals (red) of the estimated system’s response function to forcing. Panel (b) is a plot of the evolution in

time of the correlation parameter ϕ(t) (blue) and 95% credible intervals (red) with an estimated probability of positive slope P (bϕ > 0 | y)

Model b̂ϕ P (b̂ϕ > 0) b̂ρ Marg. log-likelihood

AR(2) Linear detrending 0.2 0.98 −0.35 56.49

AR(2) Square detrending 0.41 1 −0.33 54.72

AR(2) Forcing response 0.34 1 −0.99 61.97

AR(1) Linear detrending 0.145 0.98 - 53.46

AR(1) Square detrending 0.278 0.99 - 51.68

AR(1) Forcing response 0.19 0.93 - 54.13
Table 3. Summary statistics from Fig. 5 and Fig. 6 showing posterior marginal means of b̂ϕ, probability of b̂ϕ positive,posterior marginal

means of b̂ρ and marginal log-likelihood for the three models used here. Results from the models introduced in Myrvoll-Nilsen et al. (2024)

are also shown for comparison purposes.
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4 Conclusions

This study investigates the stability of the Atlantic Meridional Overturning Circulation (AMOC) by proposing a time-dependent

extension of the autoregressive AR(2) model introduced by Morr and Boers (2024) and Boers (2021). The primary objective of225

this model is to enhance the reliability of early warning signals (EWS) by minimizing false positives. This is achieved through

the decomposition of the observed signal into two distinct components: ρ(t), which captures time-dependent external variabil-

ity, and ϕ(t), which reflects changes in the internal dynamics associated with system stability. By isolating these effects, the

model aims to identify more accurately early signs of destabilization. Following the approach of Myrvoll-Nilsen et al. (2024),

we assume a linear temporal dependence for both ρ(t) and ϕ(t), estimating their respective slope parameters within a hierar-230

chical Bayesian framework. This statistical approach allows us to incorporate prior information and quantify the uncertainty of

the EWS through the posterior distributions of the parameters. The performance of the model is first evaluated using simulated

data, demonstrating both high estimation accuracy and robustness against false detections of ongoing destabilization.

The methodology is applied to a proxy for the AMOC fingerprint. In order to meet stationarity assumptions, we consider

various detrending techniques, including linear and second-order polynomial detrending, as well as incorporating a forcing235

component based on the integrated meltwater runoff from Central-West Greenland. Across all model configurations, we find

statistically significant early warning signals. This is consistent with prior findings in the literature and supports the hypothesis

of a possible ongoing destabilization of the AMOC.

While assuming a linear structure for ϕ(t) has proven effective for detecting EWS, we emphasize that the model proposed

here should not be interpreted as a comprehensive or mechanistic representation of the underlying physical processes governing240

the AMOC. Despite its success in identifying early signs of destabilization, the model is limited in its ability to forecast the

future trajectory of the system or predict the timing of a potential tipping point. Addressing these limitations would require a

more flexible modeling approach, potentially involving a nonlinear or nonparametric structure for the correlation parameters,

which lies beyond the scope of the present work.

Although our analysis has focused on a specific proxy of the AMOC fingerprint, the proposed methodology is generalizable245

and can be adapted to study the stability of other critical climate components, such as the Greenland Ice Sheet, Arctic sea ice,

or the Amazon rainforest. To facilitate wider use and reproducibility, we have extended the existing R package INLA.ews to

incorporate our methodological advancements. This software provides a user-friendly interface for implementing our approach,

leveraging the computational efficiency of the INLA framework for Bayesian inference.

Code and data availability. The code and data sets used for this paper is available through the R-package, INLA.ews, which can be down-250

loaded from: github.com/eirikmn/INLA.ews (last access May 26, 2025).
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